

Organizational and Cultural Lessons Learned from Challenger and Columbia

APPEL Masters Forum 18 May 13 2009

> Bryan O'Connor Chief, Safety and Mission Assurance

Lessons Learned...Why Bother?

No one wants to learn by mistakes, but we cannot learn enough from successes to go beyond the state of the art.

Henry Petroski

To Engineer is Human

Human Spaceflight Mishap Investigations

Apollo Fire

- NASA Investigation
- NASA Follow-up Advised RTF
- Congressional Investigation

Challenger

- Independent Board / NASA Investigation
- NASA Follow-up Advised RTF

Columbia

- Independent Board / Mixed Investigation
- Independent Oversight of RTF ("intent of the board")

Human Spaceflight Mishaps Common "Root Causal Factors"

- Communications
- Systems Engineering and Integration
- The "Silent Safety Program"
- Operational vs. Flight Test Mentality
- Governance
- Mission Relevance

The Two Modes of Mishap Prevention

Reacting to a Major Failure

Once harm has been done, even a fool can understand it

Homer, The Illiad, Book XVII, 1.32

The Challenge of Success

Success breeds complacency, complacency breeds failure, only the paranoid survive.

Andrew S Grove
Former CEO and Chairman of Intel

Fighting Complacency

One should expect that the expected can be prevented, but the unexpected should have been expected

Augustine's Laws, XLV

Human Spaceflight Safety Recipe (per O'C)

- 1 part Shared Values (culture/comm)
- 1 part Organization (governance, people)
- 1 part Requirements (CM, lessons learned)
- 2 parts Risk Management (still in infancy)

and,

A dash o'luck

Safety

Teamwork

Excellence

Integrity

NASA Project Technical Governance

High Residual Risk* Acceptance at NASA

- Tech Authority (relevant tech requirement owner) <u>approves</u> based on technical merit, and
- Safety Tech Authority <u>approves</u> based on risk acceptability, and
- Risk Taker (and supervisory chain of command) <u>volunteers</u> to take the risk, and
- Only then does Program or Ops Manager get to "accept the risk"

^{*}Residual risk is that extra level of risk over and above that inherent in the design requirements

Safety Accountability (Per O'C)

"Everybody is responsible for safety" But Is everybody accountable for safety?

Accountability = Responsibility x Authority x Capability

Responsibility: Everybody has it, no exceptions

Authority: Per policy: leadership has more than workers, but even the

lowest have the authority to speak up about a hazard

Capability: Per assigned resources, qualifications, experience, etc.

Important note: There is no such thing as delegation of accountability, only authority

Requirements are our Lessons Learned AC-67 Example

- Good: ops team questioned LCC* rationale
- Bad: absent right rationale, ops team manufactured wrong rationale
- Mishap Board recommended team training and updating LCCs
- Corrective action plan called for inserting rationale next to LCCs
- JSC Mission Ops follow up: insert rationale with flight rules for real time access

Risk Management for Human Spaceflight

- Known Knowns: (Systems Engineering and Program Management)
 - Disciplined program and mission management processes and people
- Known Unknowns: (Continuous Risk Management)
 - Reduce uncertainties with analysis, ground and flight test
 - Manage residual risk (including uncertainty) with conservative procedures and contingency plans...and tell them why, not just what!
- Unknown Knowns: (Continuous Process Improvement)
 - Communications , Communications
- 4
- Improve data analysis tools and techniques (e.g. trending)
- Unknown Unknowns: (Continuous Research, Test and Eval)
 - Exercise Engineering Curiosity
 - Continuously challenge assumptions, models and analyses

Characteristics of a Great SR&Q Professional

- Technically credible
- Embued with "Engineering Curiosity"
- Courageous and of high integrity
- Solid knowledge of requirements and rationale
- Good communication skills (verbal & written)
- Experienced in applicable field
- Humble yet engaged
- Persistent yet pragmatic
- Energetic and creative ("Yes if...")
- Thick skin and a sense of humor (for longevity)

GITTERDUNN...

